Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 112
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
New Phytol ; 242(2): 558-575, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38396374

RESUMO

Black wolfberry (Lycium ruthenicum Murr.) contains various bioactive metabolites represented by flavonoids, which are quite different among production regions. However, the underlying regulation mechanism of flavonoid biosynthesis governing the bioactivity of black wolfberry remains unclear. Presently, we compared the bioactivity of black wolfberry from five production regions. Multi-omics were performed to construct the regulation network associated with the fruit bioactivity. The detailed regulation mechanisms were identified using genetic and molecular methods. Typically, Qinghai (QH) fruit exhibited higher antioxidant and anti-inflammatory activities. The higher medicinal activity of QH fruit was closely associated with the accumulation of eight flavonoids, especially Kaempferol-3-O-rutinoside (K3R) and Quercetin-3-O-rutinoside (rutin). Flavonoid biosynthesis was found to be more active in QH fruit, and the upregulation of LrFLS, LrCHS, LrF3H and LrCYP75B1 caused the accumulation of K3R and rutin, leading to high medicinal bioactivities of black wolfberry. Importantly, transcription factor LrMYB94 was found to regulate LrFLS, LrCHS and LrF3H, while LrWRKY32 directly triggered LrCYP75B1 expression. Moreover, LrMYB94 interacted with LrWRKY32 to promote LrWRKY32-regulated LrCYP75B1 expression and rutin synthesis in black wolfberry. Transgenic black wolfberry overexpressing LrMYB94/LrWRKY32 contained higher levels of K3R and rutin, and exhibited high medicinal bioactivities. Importantly, the LrMYB94/LrWRKY32-regulated flavonoid biosynthesis was light-responsive, showing the importance of light intensity for the medicinal quality of black wolfberry. Overall, our results elucidated the regulation mechanisms of K3R and rutin synthesis, providing the basis for the genetic breeding of high-quality black wolfberry.


Assuntos
Lycium , Lycium/genética , Melhoramento Vegetal , Flavonoides , Antioxidantes , Rutina , Frutas/genética
2.
Water Res ; 252: 121212, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38320394

RESUMO

The aim of this study was to investigate the removal of metronidazole (MNZ) from seawater using a bioelectrochemical system (BES). Single-chamber BES (i.e., S-BES) and dual-chamber BES (i.e., D-BES) were constructed with carbon brush as the anode and cathode. With the inoculum of sea mud and 2 g/L of glucose as the substrate in seawater, S-BES and D-BES were acclimated to test the MNZ removal. Results showed that S-BES could remove almost 100 % of 200 mg/L MNZ within 120 h and remain stable within 10 cycles of operation (∼50 d) under the applied voltage of 0.8 V. The MNZ removal reached ∼100 % and 60.2 % in the cathodic and anodic chambers of D-BES fed by 100 mg/L MNZ under 0.8 V, respectively. The MNZ concentration of 200 mg/L significantly inhibited the sulfur metabolism, decreased the ratio of live to dead cells in the electrode biofilms, and thus reduced the SO42- removal in the S-BES. The MNZ degradation and S2- oxidation was mainly attributed to the cathodic and anodic biofilms of S-BES, respectively. Three degradation pathways of MNZ were proposed based on the identified intermediates and results of density functional theory calculations. The synergies among different genus species in the bacterial communities of biofilms, and between anodic and cathodic reactions could be responsible for the high performance of S-BES. Results from this study should be not only useful for the MNZ removal but also for effective MNZ inhibition of sulfate-reducing bacteria induced microbiologically influenced corrosion in seawater.


Assuntos
Ácidos Alcanossulfônicos , Bactérias , Metronidazol , Oxirredução , Eletrodos , Água do Mar
3.
Sci Total Environ ; 916: 170332, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38266726

RESUMO

Sulfamethoxazole is a representative of sulfonamide antibiotic pollutants. This study aims to investigate the degradation pathways of sulfamethoxazole and the response of microbial communities using the autotrophic biocathode in microbial photo-electrolysis systems (MPESs). Sulfamethoxazole with an initial concentration of 2 mg L-1 was degraded into small molecule propanol within 6 h with the biocathode. Elemental sulfur (S0) was detected in the cathode chamber, accounting for 57 % of the removed sulfate. The conversion from sulfate to S0 indicated that autotrophic microorganisms might adopt a novel pathway for sulfamethoxazole removal in the MPES. In the abiotic cathode, sulfamethoxazole degradation rate was 0.09 mg L-1 h-1 with the electrochemistry process. However, sulfamethoxazole was converted to products that still contain benzene rings, including p-aminothiophenol, 3-amino-5-methylisoxazole, and sulfonamide. The microbial community analysis indicated that the synergistic interaction of Desulfovibrio and Acetobacterium promoted the autotrophic degradation of sulfamethoxazole. The results suggested that autotrophic microorganisms may play an important role in the environmental transformation of sulfamethoxazole.


Assuntos
Sulfametoxazol , Sulfatos , Sulfatos/química , Oxirredução , Eletrólise , Antibacterianos , Sulfanilamida , Óxidos de Enxofre , Eletrodos
4.
Plant Biotechnol J ; 22(1): 82-97, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37596985

RESUMO

Colletotrichum fructicola causes a broad range of plant diseases worldwide and secretes many candidate proteinous effectors during infection, but it remains largely unknown regarding their effects in conquering plant immunity. Here, we characterized a novel effector CfEC12 that is required for the virulence of C. fructicola. CfEC12 contains a CFEM domain and is highly expressed during the early stage of host infection. Overexpression of CfEC12 suppressed BAX-triggered cell death, callose deposition and ROS burst in Nicotiana benthamiana. CfEC12 interacted with apple MdNIMIN2, a NIM1-interacting (NIMIN) protein that putatively modulates NPR1 activity in response to SA signal. Transient expression and transgenic analyses showed that MdNIMIN2 was required for apple resistance to C. fructicola infection and rescued the defence reduction in NbNIMIN2-silenced N. benthamiana, supporting a positive role in plant immunity. CfEC12 and MdNPR1 interacted with a common region of MdNIMIN2, indicating that CfEC12 suppresses the interaction between MdNIMIN2 and MdNPR1 by competitive target binding. In sum, we identified a fungal effector that targets the plant salicylic acid defence pathway to promote fungal infection.


Assuntos
Imunidade Vegetal , Fatores de Virulência , Imunidade Vegetal/genética , Virulência , Doenças das Plantas/microbiologia
5.
J Environ Manage ; 348: 119387, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37879174

RESUMO

Labile organic carbon (LOC) input strongly affects soil organic matter (SOM) dynamics, including gains and losses. However, it is unclear how redox fluctuations regulate these processes of SOM decomposition and formation induced by LOC input. The objective of this study was to explore the impacts of LOC input on SOM turnover under different redox conditions. Soil samples were collected in a subtropical forest. A single pulse of 13C-labeled glucose (i.e., LOC) was applied to the soil. Soil samples were incubated for 40 days under three redox treatments, including aerobic, anoxic, and 10-day aerobic followed by 10-day anoxic conditions. Results showed that LOC input affected soil priming and 13C-SOM accumulation differently under distinct redox conditions by altering the activities of various microorganisms. 13C-PLFAs (phospholipid fatty acids) were analyzed to determine the role of microbial groups in SOM turnover. Increased activities of fungi and gram-positive bacteria (i.e., the K-strategists) by LOC input could ingest metabolites or residues of the r-strategists (e.g., gram-negative bacteria) to result in positive priming. Fungi could use gram-negative bacteria to stimulate priming intensity via microbial turnover in aerobic conditions first. Reduced activities of K-strategists as a result of the aerobic to anoxic transition decreased priming intensity. The difference in LOC retention in SOM under different redox conditions was mainly attributable to 13C-particulate organic carbon (13C-POC) accumulation. Under aerobic conditions, fungi and gram-positive bacteria used derivatives from gram-negative bacteria to reduce newly formed POC. However, anoxic conditions were not conducive to the uptake of gram-negative bacteria by fungi and gram-positive bacteria, favoring SOM retention. This work indicated that redox-regulated microbial activities can control SOM decomposition and formation induced by LOC input. It is extremely valuable for understanding the contribution of soil affected by redox fluctuations to the carbon cycle.


Assuntos
Microbiologia do Solo , Solo , Solo/química , Florestas , Carbono/química , Oxirredução , Fungos/metabolismo
6.
Waste Manag ; 171: 173-183, 2023 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-37660630

RESUMO

Hydrogen production from food waste is of great significance for energy conversion and pollution control. The aim of this study was to investigate the glucose fermentation from food waste and hydrogen (H2) production in the single-chamber microbial electrolysis cell (MEC) under hyperalkaline conditions. Single-chamber MECs were tested with 1 g/L glucose as substrate under different pH values (i.e., 7.0, 9.5, and 11.2) and applied voltages (i.e., 0.8, 1.2, and 1.6 V). With pH increase from 7.0 to 11.2, H2 production with methanogenesis inhibition was significantly improved in the MEC. At pH of 11.2, the maximum current density reached 180 ± 9 A/m3 with the H2 purity of 93.3 ± 1.2% and average H2 yield of 7.72 ± 0.23 mol H2/ mol glucose under 1.6 V. Acetate from glucose fermentation was the largest electron sink within 12 h. Methanobacterium alcaliphilum dominated the archaeal communities with the relative abundance of > 99.0% in the cathodic biofilms. The microbial communities and mcr A gene copy numbers analyses showed that high pH enhanced the acetate production from glucose fermentation, inhibited syntrophic acetate-oxidizing with hydrogenotrophic methanogenesis in the anodic biofilms, and inhibited hydrogenotrophic methanogenesis in the cathodic biofilms. Our results of hyperalkaline conditions provide a feasible way to harvest H2 efficiently from fermentable substrates in the single-chamber MEC.

7.
Acta Biomater ; 169: 88-106, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37572981

RESUMO

Biohybrid magnetic microrobots (BMMs) have emerged as an exciting class of microrobots and have been considered as a promising platform in biomedicine. Many microorganisms and body's own cells show intriguing properties, such as morphological characteristics, biosafety, and taxis abilities (e.g., chemotaxis, aerotaxis), which have made them attractive for the fabrication of microrobots. For remote controllability and sustainable actuation, magnetic components are usually incorporated onto these biological entities, and other functionalized non-biological components (e.g., therapeutic agents) are also included for specific applications. This review highlights the latest developments in BMMs with a focus on their biomedical applications. It starts by introducing the fundamental understanding of the propulsion system at the microscale in a magnetically driven manner, followed by a summary of diverse BMMs based on different microorganisms and body's own cells along with their relevant applications. Finally, the review discusses how BMMs contribute to the advancements of microrobots, the current challenges of using BMMs in practical clinical settings, and the future perspectives of this exciting field. STATEMENT OF SIGNIFICANCE: Biohybrid magnetic microrobots (BMMs), composed of biological entities and functional parts, hold great potential and serve as a novel and promising platform for biomedical applications such as targeted drug delivery. This review comprehensively summarizes the recent advancements in BMMs for biomedical applications, mainly focused on the representative propulsion modalities in a magnetically propelled manner and diverse designs of BMMs based on different biological entities, including microorganisms and body's own cells. We hope this review can provide ideas for the future design, development, and innovation of micro/nanorobots in the field of biomedicine.


Assuntos
Robótica , Magnetismo , Fenômenos Físicos , Fenômenos Magnéticos
8.
Sci Total Environ ; 897: 165399, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37442478

RESUMO

Photoconversion of tetracycline (TC) has been widely reported. However, the effect of microplastics (MPs) on TC conversion kinetics and mechanism has rarely been discussed. In this study, we investigated the effect of (aged) MPs on TC degradation under simulated sunlight and elucidated the underlying mechanism. Our findings demonstrated that the physical and chemical properties of polystyrene (PS), such as particle size, surface groups, and morphology, were significantly altered after aging. Moreover, photoconversion efficiency of TC was suppressed with the spiking of aged PS, while virgin PS showed an opposite tendency. The photodegradation reaction for photosensitization of PS involved 1O2 and HO·. The light-screening effect of aged PS occupied predominance, weakening the direct UV-light absorption of TC and resulting in lower TC degradation efficiency. Additionally, triplet-excited state PS was generated after photon acceptance by aged PS, which could transfer energy to O2, leading to the production of 1O2. The toxicity test manifested that the direct impact of TC products on fathead minnow was ignorable, but long-term negative effects on growth deserved observation. This study enhances our understanding of the environmental fate of PS and TC under sunlight, and provides crucial reference information for better evaluating the potential risk of MPs and chemicals.


Assuntos
Compostos Heterocíclicos , Poluentes Químicos da Água , Poliestirenos/toxicidade , Poliestirenos/química , Microplásticos/toxicidade , Microplásticos/química , Luz Solar , Plásticos , Poluentes Químicos da Água/análise , Tetraciclina/toxicidade , Antibacterianos
9.
Ecol Evol ; 13(6): e10073, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37274151

RESUMO

Paeonia decomposita, Paeonia rotundiloba, and Paeonia rockii are three closely related species of Sect. Moutan is distributed in the montane area of the Eastern Hengduan Mountain region. Understanding the population history of these three tree peony species could contribute to unraveling the evolutionary patterns of undergrowth species in this hotspot area. We used one nuclear DNA marker (internal transcribed spacer region, ITS) and two chloroplast DNA markers (matK, ycf1) to reconstruct the phylogeographic pattern of the populations. In total, 228 individuals from 17 populations of the three species were analyzed in this study. Three nuclear clades (Clade I - Clade III) and four maternal clades (Clade A - Clade D) were reconstructed. Molecular dating suggested that young lineages diverged during the late Pliocene and early Pleistocene, younger than the uplift of the Hengduan Mountains but older than the last glacial maximum (LGM). Significant population and phylogeographic structures were detected at both markers. Furthermore, the populations of these tree peonies were overall at equilibrium during the climatic oscillations of the Pleistocene. The simulated palaeoranges of the three species during the LGM period mostly overlapped, which could have led to cross-breeding events. We propose an evolutionary scenario in which mountain orogenesis around the Hengduan Mountain area triggered parapatric isolation between maternal lineages of tree peonies. Subsequent climatic fluctuations drove migration and range recontact of these populations along the valleys. This detailed evolutionary history provides new insights into the phylogeographic pattern of species from mountain-valley systems.

10.
Environ Sci Ecotechnol ; 16: 100278, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37251519

RESUMO

The global problem of petroleum contamination in soils seriously threatens environmental safety and human health. Current studies have successfully demonstrated the feasibility of bioelectrokinetic and bioelectrochemical remediation of petroleum-contaminated soils due to their easy implementation, environmental benignity, and enhanced removal efficiency compared to bioremediation. This paper reviewed recent progress and development associated with bioelectrokinetic and bioelectrochemical remediation of petroleum-contaminated soils. The working principles, removal efficiencies, affecting factors, and constraints of the two technologies were thoroughly summarized and discussed. The potentials, challenges, and future perspectives were also deliberated to shed light on how to overcome the barriers and realize widespread implementation on large scales of these two technologies.

11.
Microbiome ; 11(1): 71, 2023 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-37020239

RESUMO

BACKGROUND: Mangrove ecosystems are considered as hot spots of biogeochemical cycling, yet the diversity, function and coupling mechanism of microbially driven biogeochemical cycling along the sediment depth of mangrove wetlands remain elusive. Here we investigated the vertical profile of methane (CH4), nitrogen (N) and sulphur (S) cycling genes/pathways and their potential coupling mechanisms using metagenome sequencing approaches. RESULTS: Our results showed that the metabolic pathways involved in CH4, N and S cycling were mainly shaped by pH and acid volatile sulphide (AVS) along a sediment depth, and AVS was a critical electron donor impacting mangrove sediment S oxidation and denitrification. Gene families involved in S oxidation and denitrification significantly (P < 0.05) decreased along the sediment depth and could be coupled by S-driven denitrifiers, such as Burkholderiaceae and Sulfurifustis in the surface sediment (0-15 cm). Interestingly, all S-driven denitrifier metagenome-assembled genomes (MAGs) appeared to be incomplete denitrifiers with nitrate/nitrite/nitric oxide reductases (Nar/Nir/Nor) but without nitrous oxide reductase (Nos), suggesting such sulphide-utilizing groups might be an important contributor to N2O production in the surface mangrove sediment. Gene families involved in methanogenesis and S reduction significantly (P < 0.05) increased along the sediment depth. Based on both network and MAG analyses, sulphate-reducing bacteria (SRB) might develop syntrophic relationships with anaerobic CH4 oxidizers (ANMEs) by direct electron transfer or zero-valent sulphur, which would pull forward the co-existence of methanogens and SRB in the middle and deep layer sediments. CONCLUSIONS: In addition to offering a perspective on the vertical distribution of microbially driven CH4, N and S cycling genes/pathways, this study emphasizes the important role of S-driven denitrifiers on N2O emissions and various possible coupling mechanisms of ANMEs and SRB along the mangrove sediment depth. The exploration of potential coupling mechanisms provides novel insights into future synthetic microbial community construction and analysis. This study also has important implications for predicting ecosystem functions within the context of environmental and global change. Video Abstract.


Assuntos
Desulfovibrio , Microbiota , Metano/metabolismo , Nitrogênio/metabolismo , Enxofre/metabolismo , Sulfetos , Sedimentos Geológicos/microbiologia
12.
Lab Chip ; 23(7): 1905-1917, 2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-36880376

RESUMO

Micromotors have been shown to have great potential in various fields (e.g., targeted therapeutics, self-organizing systems), and research on the cooperative and interactive behaviours of multiple micromotors could potentially revolutionize many fields in terms of performing multiple or complex tasks to compensate for the limitations of individual micromotors; however, dynamically reversible transitions among diverse behaviours remain much less explored, and such dynamic transformations are advantageous for achieving complex tasks. Here, we present a microsystem consisting of multiple disk-like micromotors capable of performing reversible transformations between cooperative and interactive behaviours at the liquid surface. The micromotors with aligned magnetic particles in our system have great magnet properties, which provides a strong magnetic interaction with each other and is vital for the whole microsystem. We offer and analyse the physical models among multiple micromotors concerning the cooperative and interactive modes in the lower and higher frequency ranges, respectively, between which the state transformation can reversibly occur. Furthermore, based on the proposed reversible microsystem, the feasibility of the application of self-organization is verified by demonstrating three different dynamic self-organizing behaviours. Our proposed dynamically reversible system has great potential to serve as a paradigm for studying cooperative and interactive behaviours among multiple micromotors in the future.

13.
New Phytol ; 237(2): 672-683, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36229922

RESUMO

The individual and combined effects of abiotic factors on pollinator-mediated selection on floral traits are not well documented. To examine potential interactive effects of water and nutrient availability on pollinator-mediated selection on three floral display traits of Primula tibetica, we manipulated pollination and nutrient availability in a factorial experiment, conducted at two common garden sites with different soil water content (natural vs addition). We found that both water and nutrient availability affected floral trait expression in P. tibetica and that hand pollination increased seed production most when both nutrient content and water content were high, indicating joint pollen and resource limitation. We documented selection on all floral traits, and pollinators contributed to directional and correlational selection on plant height and number of flowers. Soil water and nutrient availability interactively influenced the strength of both pollinator-mediated directional and correlational selection, with significant selection observed when nutrient or water availability was high, but not when none or both were added. The results suggest that resource limitation constrains the response of P. tibetica to among-individual variation in pollen receipt, that addition of nutrients or water leads to pollinator-mediated selection and that effects of the two abiotic factors are nonadditive.


Assuntos
Flores , Primula , Flores/fisiologia , Pólen/fisiologia , Polinização/fisiologia , Primula/anatomia & histologia , Seleção Genética , Solo/química , Água/análise , Nutrientes/análise , Nutrientes/metabolismo
14.
Lab Chip ; 22(18): 3412-3423, 2022 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-35880648

RESUMO

Microrobots have been extensively studied for biomedical applications, and significant innovations and advances have been made in diverse aspects of the field. However, most studies have been based on individual microrobots with limited capabilities, constraining their scalability of functions for practical use. Here, we demonstrate the interactive and synergistic behaviours of multiple microrobots that are heterogeneous or incompletely homogeneous. A frequency-response theory is proposed where in a certain frequency range of an external rotating magnetic field (RMF), microrobots with dispersed and linearly aligned magnetic nanoparticles (MNPs) would exhibit similar and different behaviour, respectively. These microrobots rotate following the rotation of the external field, and such complete rotational motion is interrupted when the frequency exceeds a certain value, called the critical frequency (cf), but such behaviour is more prominent in microrobots with linear MNPs. Upon further investigating the effect of various parameters on the cf of the microrobots during the fabrication process, we find that heterogeneous microrobots with specific cf values can be customized. In addition, experiments and simulations are combined to show the hydrodynamic behaviours around the rotating microrobots at different frequencies. Based on these findings, the interactive and synergistic behaviours of multiple microrobots are presented, which suggests great potential for the independent execution of multiple tasks or the synergistic performance of complex tasks and is significant for the future development of interactive synergistic microrobots in the biomedical field.


Assuntos
Robótica , Hidrodinâmica , Campos Magnéticos , Rotação
15.
Sci Total Environ ; 836: 155724, 2022 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-35523344

RESUMO

The aim of this study was to investigate the ecological role of quorum-sensing signaling molecule on the autotrophic biocathode for CO2 reduction and acetate synthesis. As a typical quorum-sensing signaling molecule, N-Hexanoyl-L-homoserine lactone (C6HSL) was used to regulate the construction of cathode biofilm. Results showed that the maximum acetate production from CO2 reduction improved by 94.8%, and the maximum Faraday efficiency of the microbial electrosynthesis system enhanced by 71.7%, with the regulation of C6HSL. Electrochemical analyses indicated that higher electrochemical activity and lower charge resistance of biocathode were obtained with C6HSL than without C6HSL. Confocal laser scanning microscopy and electron inhibitor experiment suggested that exogenous C6HSL increased living biomass in the biofilm and facilitated the electron transfer pathway related to NADH dehydrogenase-CoQ and proton motive force. With the C6HSL regulation, the relative abundance of hydrogen producers (e.g., Desulfovibrio and Desulfomicrobium) increased, contributing to the improved performance of autotrophic biocathode.


Assuntos
Dióxido de Carbono , Percepção de Quorum , 4-Butirolactona/análogos & derivados , Acetatos/química , Dióxido de Carbono/química
16.
ACS Omega ; 7(14): 12004-12014, 2022 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-35449939

RESUMO

Manganese-based catalysts have shown great potential for use as a hydrocarbon reductant for NO x reduction (HC-SCR) at low temperatures if their catalytic stability could be further maintained. The effect of CeO2 as a promoter and catalyst stability agent for activated carbon supported MnO x was investigated during low temperature deNO x based on a C2H4 reductant. The modern characterization technology could provide a clear understanding of the activity observed during the deNO x tests. When reaction temperatures were greater than 180 °C and with ceria concentrations more than 5%, the overall NO conversion became stable near 70% during long duration testing. In situ DRIFTS shows that C2H4 is adsorbed on the Mn3Ce3/NAC catalysts to generate hydrocarbon activated intermediates, R-COOH, and the reaction mechanism followed the E-R mechanism. The stability and the analytical data pointed to the formation of stable oxygen vacancies within Ce3+/Ce4+ redox couplets that prevented the reduction of MnO2 to crystalline Mn2O3 and promoted the chemisorption of oxygen on the surface of MnO x -CeO x structures. Based on the data, a synergetic mechanism model of the deNO x activity is proposed for the MnO x -CeO x catalysts.

17.
Sci Total Environ ; 833: 155190, 2022 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-35421490

RESUMO

This study aimed to reveal the synergistic effect of bioanode and biocathode on nitrobenzene (NB) removal with different microbial community structures and functions. Single-chamber bioelectrochemical reactors were constructed and operated with different initial concentrations of NB and glucose as the substrate. With the synergistic effect of biocathode and bioanode, NB was completely removed within 8 h at a kinetic rate constant of 0.8256 h-1, and high conversion rate from NB to AN (92%) was achieved within 18 h. The kinetic rate constant of NB removal was linearly correlated with the maximum current density and total coulombs (R2 > 0.95). Increase of glucose and NB concentrations had significantly positive and negative effects, respectively, on the NB removal kinetics (R2 > 0.97 and R2 > 0.93, respectively). Geobacter sp. and Enterococcus sp. dominated in the bioanode and biocathode, respectively. The presence of Klebsiella pneumoniae in the bioanode was beneficial for Geobacter species to produce electricity and to alleviate the NB inhibition. As one of the dominant species at the biocathode, Methanobacterium formicicum has the ability of nitroaromatics degradation according to KEGG analysis, which played a crucial role for NB reduction. Fermentative bacteria converted glucose into volatile fatty acids or H2, to provide energy sources to other species (e.g., Geobacter sulfurreducens and Methanobacterium formicicum). The information from this study is useful to optimize the bioelectrocatalytic system for nitroaromatic compound removal.


Assuntos
Fontes de Energia Bioelétrica , Microbiota , Eletricidade , Eletrodos , Glucose , Nitrobenzenos/metabolismo
18.
Sci Total Environ ; 831: 154798, 2022 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-35367555

RESUMO

The aim of this study was to establish the relationship between spatial distribution of Geobacter and electric intensity in the microbial electrolysis desalination and chemical-production cell (MEDCC) and to investigate the effect of enlarged volumetric anode on the performance of MEDCC. The MEDCC was constructed with nine carbon brush anodes (length × diameter = 11 cm × 3 cm) as enlarged volumetric anode, and operated by feeding with 1 g/L acetate as substrate and 35 g/L NaCl as artificial seawater under the applied voltages of 1.2-4.5 V. Spatial distribution of Geobacter in the anodic biofilm was determined according to the bacterial community analysis on 27 biofilm samples from the top, middle and bottom layers of anodes (i.e., with distance of 4.5, 10, and 15.5 cm to the cathode, respectively). Results showed that the enlarged volumetric anode significantly improved the performance of MEDCC. The maximum desalination rate and current density reached 338.5 ± 21.8 mg/L∙h and 55.7 ± 3.7 A/m2 in the MEDCC, respectively. The electric intensity values decreased with the distance from the anode to the cathode and formed an uneven distribution in the anode chamber. The samples in the top layer of anodes had the highest average 16S rRNA gene copy number of Geobacter of 1.55 × 107 copies/µL, which was 18 times higher than that in the bottom layer of anodes. A linear relation was established between the spatial distribution of Geobacter and electric intensity (R2 = 0.994-0.999). The electric intensity gradient created the uneven spatial distribution of Geobacter in the biofilms of volumetric anode. Results from this study could be useful to enrich Geobacter in the anodic biofilm thus to improve the performance of MEDCC.


Assuntos
Fontes de Energia Bioelétrica , Geobacter , Fontes de Energia Bioelétrica/microbiologia , Biofilmes , Eletrodos , Eletrólise , RNA Ribossômico 16S
19.
Tissue Cell ; 76: 101767, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35257941

RESUMO

This study aims to investigate the expression levels of fibrinogen α chain (FGA) in human gastric cancer (GC) tissues and cell lines, clarify its role in gastric cancer progression, and explore its underlying mechanism. Bioinformatics analysis, Immunoblot, Immunohistochemical (IHC), and quantitative PCR assays were performed to assess the expression of FGA in human gastric cancer tissues and cell lines. CCK-8 and colony formation assays were performed to detect its role in the proliferation of gastric cancer cells. Wound healing, transwell, and Immunofluorescence were performed to detect its effects on gastric cancer cell motility and epithelial-mesenchymal transition (EMT) processes. Luciferase and CHIP assays were performed to confirm the transcriptional regulation of FGA on ITGA5. Immunoblot assays and double-label RFP-GFP-LC3 immunofluorescence analysis were conducted to detect its effects on gastric cancer cell autophagy and FAK/ERK pathway, and in vivo tumor growth assays were further performed. We found the low expression of FGA in human gastric cancer tissues and cell lines. FGA suppressed gastric cancer cell proliferation, motility, and EMT process, and stimulated cell autophagy. We further found that FGA suppressed the expression of Integrin-α5 (ITGA5) and inhibited the FAK/ERK pathway, therefore suppressing the progression of gastric cancer. The in vivo assays further confirmed that FGA suppressed tumor growth of gastric cancer cells in the BALB/c nude mice (18-22 g, female, 8-week-old) through suppressing ITGA5-mediated FAK/ERK pathway in mice. We demonstrated the mechanism underlying FGA suppressing gastric cancer progression, and therefore we thought FGA could serve as a tumor suppressor protein in gastric cancer.


Assuntos
Morte Celular Autofágica , Fibrinogênio , Integrina alfa5 , Sistema de Sinalização das MAP Quinases , Neoplasias Gástricas , Animais , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Proteínas da Matriz Extracelular/metabolismo , Feminino , Fibrinogênio/genética , Fibrinogênio/metabolismo , Integrina alfa5/genética , Integrina alfa5/metabolismo , Camundongos , Camundongos Nus , Metástase Neoplásica
20.
Sci Total Environ ; 823: 153789, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35150675

RESUMO

The aim of this study was to investigate the feasibility of sulfate removal and elemental sulfur (S0) recovery in the single-chamber bioelectrochemical system (S-BES). The performance of S-BES was compared with that of dual-chamber bioelectrochemical system (D-BES). The S-BES was constructed with graphite felt as the anode and graphite brush as the cathode. The D-BES was constructed with proton exchange membrane as the separator between anode and cathode chambers. With an applied voltage of 1.0 V and 1 g/L acetate as the substrate, the S-BES and D-BES were tested by feeding with 480 mg/L SO42- in the phosphate buffer. Results showed that the maximum current density of 37.6 ± 4.5 mA/m3 was reached in the S-BES, which was higher than that in the D-BES (i.e., 22.2 ± 2.6 mA/m3). The SO42- removal was much higher in the S-BES than in the D-BES (99.5% vs. 57.2%). In the effluent and the electrodes of S-BES, S0 was identified with Raman and X- Ray diffraction analyses. The S0 recovery on the anode was 13.7 times of that on the cathode of S-BES, indicating that S0 was mainly produced on the anode. The measured total S0 recovery reached 67.5% in the S-BES. High relative abundance of Desulfurella (47.1%) and Geobacter (26.1%) dominated the community in the anode biofilm of S-BES. The excellent performance of S-BES may be attributed to the neutral pH in the solution and the synergistic reaction between the anode and cathode. Results from this study should be useful to enhance the S-BES applications in treating wastewater containing sulfate.


Assuntos
Fontes de Energia Bioelétrica , Grafite , Eletrodos , Sulfatos , Enxofre , Águas Residuárias
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...